
ECE

BeatBeam MDR
SDP15

Duncan Smith-Freedman, EE
Brandon Sprague, CSE

Brian Hickey, CSE
Daniel Bond, CSE

 ECE

BeatBeam Team

Daniel Bond
(Fearless) Team Leader

Board Interpretation,
Musical Implementation

Brian Hickey

Networking, Wireless
Connectivity

Duncan Smith-
Freedman

Audio-to-Light
Interpreter, Physical

Design, Power

Brandon Sprague
Web Server, Web

Application
Desktop/Mobile

Interfaces

 ECE

BeatBeam - Easy Music Creation for Amateurs

● High difficulty level with traditional methods of creating
music - lessons and instruments take time and money
that people don’t have

● Other methods of music creation (i.e. rhythm games,
GarageBand) still have creativity/complexity tradeoffs

● BeatBeam aims to be creative, easy, and fun

 ECE

Reminder of System Requirements

● Users with no prior musical experience will be able to
make pleasing music more than 90% of the time

● Groups of at least 20 people will be able to
concurrently create music

● <25 ms delay for syncing game state across clients

 ECE

System Block Diagram (with interfaces defined)

 ECE

Gameboard Interpreter
Requirements

- Quickly processes frames of user input into desired
music changes

- No “drastic” music alterations from minor grid changes
(Prof. Salthouse)

Challenges
- Reproducible music from the same grid state
- Balancing room for creativity with protection against

bad music

Solutions
- Reproducible music: allow first column to set static key

of upcoming music sequence
- To limit complexity: additional columns are interpreted

based on root note/chord (in progress)

Example Interface

 ECE

Music Generator
Requirements

- Music must sound good to the user ~90% of the time
- Latency between receiving grid state and generating music

must be low

Challenges
- VST plugins more compute-intensive than desirable on the

Pi
- Melopy Python library useful, but uses .wav files
- Still need close to real-time audio generation
- Writing to audio files and reading is very, very slow

(unacceptable)

Solutions
- Use library with light-weight MIDI support (in progress)

 ECE

Music Generator/Gameboard Block Diagrams (Before)

 ECE

Music Generator/Gameboard Block Diagrams (After)

 ECE

Audio-to-Light Interpreter
Requirements

- Take FFT of audio signal and map frequency
bins to LEDS

- Correctly average FFT size and correlate to LED
intensity

Challenges
- Power output from microcontroller is too low to

power LED array
- Powering system in final implementation

Solutions
- Use constant current LEDs with digital input

 ECE

Audio-to-Light Interpreter

 ECE

Central Node
Requirements

- Size to fit and secure Pi, microcontroller, and
speaker

- Gaps on side for LED display
- 3D printable

Challenges
- Finding ideal design shape
- Durable
- Being able to line walls with LEDs

Solutions
- Cylindrical shape with screw caps
- Formiga P110 Printer

 ECE

Network Interface
Requirements

- Central node that operates as access point (802.11 infrastructure mode)
- DHCP server assigns network addresses and static DNS address to clients
- DNS zone configured to redirect all web requests to central node
- Web server running on central node that hosts web interface for BeatBeam

Challenges
- Driver issues involving Realtek hardware
- Access point service not starting correctly
- Proper DNS routing

Solutions
- Access point service currently being started automatically
- Chosen driver doesn’t exactly match hardware but works nonetheless

 ECE

Networking Component - Block Diagram

 ECE

Web Server
Requirements

- Low latency
- Serve web interface to clients

Challenges
- Synchronizing the game state across the

clients
- Mobile-friendly site, quick and responsive on

all form-factors
Solutions

- Using low-level synchronization primitives
built into Go

- Use media queries and a responsive web
framework, as well as CSS3 animations

 ECE

Web Server Block Diagram

 ECE

Team Responsibilities and Schedule

● Brian
○ Securing of the network connection and server(s) (Jan 15)
○ Load balancing scheme for multiple clients (Feb 5)
○ Latency and throughput testing (after data types are defined) (Feb 5)

● Duncan
○ Designing and printing central node (Jan 1, availability of printer)
○ Creating LED array (Jan 10)
○ Power Plan (Jan 20) and power implementation (Feb 3)

 ECE

Team Responsibilities and Schedule

● Danny
○ Redesigned Music Generator leveraging Python and Mingus package

(Jan 7)
○ Change Gameboard Interpreter to view first column as root note/chord

(Dec 29)
○ Add support for Multi-instrument mode to Music Generator (Feb 20)

● Brandon
○ Completing Multi-instrument grid functionality (Jan 7)
○ Further integrated mobile functionality (gesture-based control) (Feb

20)

 ECE

Individual Demonstrations

 ECE

Questions?

